Combining interpolated and locally observed contributions to heat flow models

Anya Reading1, Tobias Staal1, Jacqueline Halpin1, Joanne Whittaker1

1Institute for Marine and Antarctic Studies, University Of Tasmania, Hobart, Australia

The spatial variation of heat supplied to ice sheets is an important input model parameter in ice sheet models.  Continental models of heat flow (usually referred to in the cryosphere research community as heat flux density, abbreviated to heat flux) may be calculated using seismic wavespeed tomography maps or by inference from other geophysical observables.  These broadscale maps are interpolated, smoothed representations.  Upper crustal models, in contrast, are generated directly from measuring the heat production of dominant or particularly radiogenic lithologies.


In this contribution, we combine interpolated and locally observed contributions to heat flow models with a focus on East Antarctica, including the continental interior which is covered by ice of several kilometres thickness.  We review alternative approaches to combining low resolution information on the deeper lithosphere with broad spatial coverage, and high resolution information with very limited spatial coverage relating to the present day upper crust.  Providing effective estimates of the heat supplied by the upper crust is an important research goal due to the significance of small pockets of elevated heat flow on ice sheet models.  Alternative approaches inform future probabilistic solid Earth constraints for ice sheet models.

About provides delegate registration, website and app solutions, and financial management for conferences, conventions and scientific meetings.

Terms & Conditions

All registrations and bookings are subject to our standard term and conditions.

Contact Us

Please contact the team at with any questions regarding the conference.
© 2017 - 2020 Conference Design Pty Ltd. is a division of Conference Design Pty Ltd.