Microdialysis as an in situ technique for sampling soil enzymes

Dr Scott Buckley1, Dr Diane Allen2, Dr Richard Brackin3, Dr Sandra Jämtgård1, Prof Torgny Näsholm1, Prof Susanne Schmidt1

1Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden, 2Department of Environment and Science, Dutton Park, Australia, 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia

Soil extracellular enzyme activity (EEA) represents a critical bottleneck in the release of bioavailable nutrients from organic materials. However, quantifying spatial and temporal dynamics of EEA remains challenging. Techniques which measure the activity of, or directly sample free enzymes in situ may assist in understanding the short-term exoproteomic responses of microbes and roots to substrates, but few tools exist to explore EEA with minimal disturbance. We explore the potential of in situ microdialysis sampling to directly sample soil enzymes, and we hypothesize that the technique’s bias towards free solutes will also allow differentiation of free and stabilised enzyme pools. As little is known about the efficiency of microdialysis to sample enzymes from soil, recovery of a protease standard was quantified from solution and soil, finding that enzyme recovery is hindered at lower soil moisture contents. We further measured the response of native protease activity after the addition of soybean litter to clay and sandy soils, finding microdialysis observed greater EEA in litter-amended treatments than controls in both soil types. In comparison, EEA as measured by conventional extraction-incubation methods was only greater in amended clay soils. In a final experiment, hydrolytic enzyme activity of free and stabilised clay soil fractions were estimated using microdialysis. Free enzymes contributed 9% of total hydrolytic activity in soil without litter, increasing to 46% in litter-amended soil, suggesting fresh litter promoted a transient increase in the production of free exoenzymes by soil microbes. Despite many challenges involved in applying microdialysis as a method for soil protein sampling, this method offers new possibilities for investigating challenging spatial and temporal aspects of enzyme dynamics and protein availability in soils.


Scott Buckley is a post-doctoral researcher at the Swedish University of Agricultural Sciences in Umeå, Sweden, focusing on the application of microdialysis sampling to study nitrogen dynamics and plant nutrition in boreal forest soils. Scott completed his PhD at The University of Queensland in 2018, also applying microdialysis to investigate nitrogen cycling and microbial activity in sugarcane cropping soils – and particularly how in situ microdialysis sampling might offer a plant-relevant perspective of nutrient availability. Scott is an avid scientific illustrator, contributing diagrams to numerous publications, and leads a double-life as a music composer for media.

About conferences.com.au

conferences.com.au provides delegate registration, website and app solutions, and financial management for conferences, conventions and scientific meetings.

Terms & Conditions

All registrations and bookings are subject to our standard term and conditions.

Contact Us

Please contact the team at conferences.com.au with any questions regarding the conference.
© 2017 - 2020 Conference Design Pty Ltd. conferences.com.au is a division of Conference Design Pty Ltd.