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Abstract—Agricultural robotics is a rapidly evolving research
field due to advances in computer vision, machine learning,
robotics, and increased agricultural demand. However, there
is still a considerable gap between farming requirements and
available technology due to the large differences between crop-
ping environments. This creates a pressing need for models with
greater generalisability.

We explore the issue of generalisability by considering a
fruit (sweet pepper) that is grown using different cultivar (sub-
species) and in different environments (field vs glasshouse). To
investigate these differences, we publicly release three novel
datasets captured with different domains, cultivar, cameras, and
geographic locations. We exploit these new datasets in a singular
and combined (to promote generalisation) manner to evaluate
sweet pepper (fruit) detection and classification in the wild.
For evaluation, we employ Faster-RCNN for detection due to
the ease in which it can be expanded to incorporate multi-
task learning by utilising the Mask-RCNN framework (instance-
based segmentation). This multi-task learning technique is shown
to increase the cross dataset detection F1-Score from 0.323 to
0.700, demonstrating the potential to reduce the requirements of
new annotations through improved generalisation of the model.
We further exploit the Faster-RCNN architecture to include
both super- and sub-classes, fruit and ripeness respectively,
by incorporating a parallel classification layer. For sub-class
classification considering the percentage of correct detections, we
are able to achieve an accuracy score of 0.900 in a cross domain
evaluation. In our experiments, we find that intra-environmental
inference is generally inferior, however, diversifying the data by
using a combination of datasets increases performance through
greater diversity in the training data. Overall, the introduction of
these three novel and diverse datasets demonstrates the potential
for multi-task learning to improve cross-dataset generalisability
while also highlighting the importance of diverse data to ade-
quately train and evaluate real-world systems.

I. INTRODUCTION

Agricultural robotics is increasingly prevalent due to ad-

vances in a number of fields, including robotics, computer

vision, and machine learning. These advances are partly driven

by the requirements placed on farmers to produce crop that

are both high in yield and quality; while also reducing labour

costs which have been reported [1] to be one of the most

cost-demanding factors in agriculture. Improvements in these

farming metrics requires automated technologies such as weed

management [2], and harvesting [3], [4]. In these fields, robotic

vision and machine learning will play an integral role in

ensuring successful integration into existing processes.

A clear bottleneck for applying state-of-the-art machine

learning techniques in agriculture is the ability for a trained
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system to perform well in different conditions. In this paper,

we evaluate the ability to detect sweet pepper under varying

conditions including: illumination, camera type, location, and

sub-class/colouring (cultivar). To achieve this, we build off the

prior work in [5] and explore the potential to use multi-task

learning to enhance cross-domain performance.

Fig. 1. Example images from each of the three datasets: (left column) QHDF
field dataset; (middle column) BUP glass house dataset; and (right column)
QHDP protected extended dataset.

To evaluate the performance of models in varying condi-

tions we exploit three novel datasets and leverage these for

both intra- and inter-environmental evaluations. To detect and

classify objects we utilise the Faster-RCNN [6] framework in a

similar method to [5], which provides bounding box locations

of the fruit. We expand on this by incorporating multi-task

learning using the Mask-RCNN framework [7] trained on

instance based masks, resulting in pixel-wise segmentation.

Multi-task learning, in this setting, demonstrates the ability to

increase cross domain accuracy. This is enabled by exploiting

the super-class similarity of the sweet pepper shape. In general

sweet pepper maintain a similar overall appearance irrespective

of differences in domain or environments such as differing

colouration between cultivar (sub-species).

To enrich the information provided to agricultural workers,

we also investigate classification of the ripeness (sub-class)

of a sweet pepper. This property has the potential to greatly

reduce labour costs through more intelligent workforce man-

agement (i.e. only assigning workers to fields that have high

numbers of ripe fruit). We examine two methods of estimating



this property, quality as a super-class and quality as a parallel

layer [5]. From this we show that classifying the sub-class

using a parallel node increases performance by creating an

undiluted representation of the super-class.

To enable these evaluations, large-scale datasets are required

to both train and evaluate learning frameworks. Large and

diverse datasets such as ImageNet [8] have proven beneficial

to the research community due to their generalisation via the

number of training samples. In agricultural research, however,

existing datasets are often small and specific to one envi-

ronment, such as grape counting [9], sweet pepper detection

in a polytunnel [10], and cucumber detection [11]. The lack

of available samples in these sets creates a gap between

farming requirements and research output due in part to the

individuality of each setting, such as the location, cultivar, or

crop set up.

In this paper, we complete an analysis of sweet pepper

detection in the wild, employing three novel datasets which we

release publicly. Each dataset used in this evaluation represents

a different domain. We exploit datasets collected in two unique

geographical locations: Australia and Germany; and in three

different set ups: field, polytunnel, and a glass house. Figure 1

shows an example from each of these datasets. The two QHD

sets were collected in Australia by the Queensland University

of Technology (QUT) with Horticulture Innovation Australia

(HIA) and the Department of Agriculture and Fisheries (DAF).

The final dataset (BUP) was collected in Germany by the

University of Bonn.

To summarise, we perform an evaluation of sweet pepper

detection, segmentation, and quality assessment. Evaluations

show that while domain specific models yield higher perfor-

mance on their source data, detection and segmentation of

sweet pepper on unseen data is viable for agricultural robotics

by exploiting multi-task learning. Our novel contributions

include:

1) We improve cross domain generalisation through multi-

task learning, and demonstrate the generality of the

Mask-RCNN framework which when trained on the

BUP dataset achieves impressive performance both

within and across domains;

2) An analysis into the generalisation of the three new

datasets and their combinations for detection using the

Faster-RCNN framework, including the benefits of using

a parallel classification layer for super- and sub-class

detection;

3) The release of two novel QHD datasets captured on

RealSense 200 cameras which contain RGB images,

along with bounding boxes and sub-class annotations

of each sweet pepper;

4) The release of a third sweet pepper dataset, BUP, cap-

tured using the Realsense 435i camera, containing raw

bagfiles, registered RGB and depth images, and sub-

class based instance segmentation masks.

II. RELATED WORK

Crop detection and classification techniques have improved

substantially since Nuske et al. [12] presented their grape

yield estimation method using a radial symmetry transform.

This early work, while sufficient for yield estimation, did have

significant limitations with object occlusion.

Continuing with smaller objects, Hung et al. [13] proposed

a yield estimation approach for almonds, and achieved im-

pressive performance using a combination of a sparse auto-

encoder and conditional random fields (CRF). However, once

again occlusion was a limiting factor for accuracy.

In an effort to alleviate issues of occlusion, Zabawa et al. [9]

transform segmentation and detection of grapes into a three

class problem. Using neural networks they detect not only

the location of the grapes themselves, but also the edges of

the individual grape. This allows the grapes to be segmented

into individual fruit, and counted for yield estimation. While

limited data proved an issue for this technique, their overall

accuracy, specifically in the face of multiple objects in a small

space, was impressive.

McCool et al. [14] propose one of the earliest sweet pepper

approaches. They segment each sweet pepper at the pixel level,

using hand selected and sparse auto-encoder features fed to a

CRF. Once again somewhat alleviating the occlusion problem

this technique achieved results similar to a human.

Considering detection performance, these results were su-

perseded by Sa et al. [10] and Halstead et al. [5]. In [10]

Faster-RCNN [6], is employed to classify the object and it’s

bounds. They were able to achieve impressive results across a

number of crops including sweet pepper. Expanding on [10],

[5] sought to detect the “quality” (sub-class) of the crop

using a parallel classification node added to the Faster-RCNN

framework. This technique could detect both the super-class

(sweet pepper) and the sub-class with high accuracy.

For the purpose of detecting apples at varying stages of the

life cycle in an orchard, Tian et al. [15] evaluate different deep

learning techniques for detection. Faster-RCNN and Yolo-

V3 [16] are considered, with Yolo-V3 providing the best

results. However while all of these techniques employ different

detection routines, a common theme remains: the evaluation

data is from the same domain as the training data. For a

technique to be utilised on a robotic platform it requires

generality as each farm, or field within a farm, has unique

properties.

To evaluate the generalisability of these techniques datasets

require variability in a number of areas including: lighting

conditions, cultivar, and environment of capture. Early sweet

pepper datasets include [10] and [5] which were captured in

a single environment and cultivar with only a small number

of samples. Models trained on this type of dataset capture

the bias of both the environment and captured cultivar. In a

similar manner [11] captured cucumber data in a greenhouse

for a total of 522 images. While their technique employs data

augmentation to significantly increase the volume of data it is

still captured in a single environment. In an effort to increase



the variability of their dataset [17] captures apple data in two

separate orchards. While this data does have a number of

similarities between environments (orchard setting and using

the same camera) their dataset is complicated by the addition

of night time capture under artificial light.

In many agricultural datasets the captured data is too small

or specific to create models that are able to generalise. For

robotic platforms to be usable across a broad range of farming

environments more dynamic data is required. This data acts to

ensure viability of detection, segmentation, or harvesting with

the aim to reduce farming labour costs.

III. DATASETS

This paper exploits three new publicly available datasets

(see Figure 1 and Table I) and their combinations for detection

and classification of sweet pepper. Each dataset contains

unique properties (collection environment, camera used, illu-

mination, occlusion, and cultivar) adding extra complexity and

diversity during inference.

TABLE I
NUMBER OF IMAGES CONTAINED IN EACH OF THE DATASETS USED IN

THIS PAPER, WHERE ’T’, ’V’, AND ’E’ REPRESENT THE TRAINING,
VALIDATION, AND EVALUATION SETS RESPECTIVELY.

Dataset T V E Height Width Camera

QHDF 509 604 470 640 480 RealSense 200
QHDP 345 86 256 640 480 RealSense 200
BUP 114 84 88 1280 720 RealSense 435i

All datasets are annotated for sweet pepper location (bound-

ing box or instance based masks), super-class, and sub-class

classification. Each dataset and their properties are described

in the following sections.

A. QHD Datasets

In this paper we use two sweet pepper datasets collected

in Australia by QUT as part of the DAF and HIA directives

(denoted QHD1). The first dataset was collected under direct

sunlight in a field situation (QHDF), and the second in a

polytunnel (QHDP), providing some protection from the sun.

Table II outlines the ground truth labels for each sub-class

in these datasets. All cultivar in the QHD datasets consist of

three sub-classes: green, mixed, and red.

TABLE II
DISTRIBUTION OF SWEET PEPPER IN EACH OF THE QHD DATASETS.

Dataset Subset Green Mixed Red

QHDF
training 1215 89 609

validation 1389 94 716
evaluation 1131 73 458

QHDP
training 782 170 718

validation 208 34 155
evaluation 956 190 528

Fig. 2. Four example images with their respective bounding boxes from the
QHDF dataset.

1) QHD Field: The QHD field (QHDF) dataset consists of

two cultivar, Warlock and SV6947, each cultivar was planted in

a single- and double-row plant configuration in outdoor field

conditions. Due to the direct exposure to the sun plants in

this domain are smaller in stature and with greater amounts of

foliage to protect the fruit (as seen in Figure 2). The single-

and double-row configurations also provide the potential for

varying levels of foliage and occlusion. Data was collected

using a RealSense 200 camera at resolutions of 640 × 480.

Annotation of the sweet pepper location and their sub-classes

was carried out by a single person with checks for ambiguity.

Four examples from this dataset with their annotation are

illustrated in Figure 2.

2) QHD Protected: The QHDP dataset is a super set of

the data from [5] and was collected in the same manner,

with a collection of examples shown in Figure 3. Annotation

of the extra data was completed by a single individual with

verification by a second. Slight variations exist between the

original data and this super set, primarily due to the manual

removal of foliage by farmers to make manual crop counting

more efficient.

B. BUP

A novel, northern hemisphere based sweet pepper dataset is

presented here: BUP (University of Bonn - Protected crop)2.

The BUP dataset was captured in a glass house replicating a

commercial setting at Campus Klein-Altendorf. Two different

cultivar of sweet pepper were grown simultaneously during

experiments: Mazurka (Rijk Zwaan) and Mavras (Enza Zaden).

Mazurka mirrors the QHD datasets in ripening, however

1https://data.researchdatafinder.qut.edu.au/dataset/
qut-hia-daf-capsicum-datasets

2http://agrobotics.uni-bonn.de/data/



Fig. 3. Four example images with their respective bounding boxes from the
QHDP dataset.

TABLE III
DISTRIBUTION OF THE SUB-CLASSES IN THE NEW BUP DATASET.

subset Black Green Mixed Red

train 1052 316 158 47
validation 450 400 79 62
evaluation 578 442 69 71

Mavras fruit ripens in four stages: green, black, mixed, red.

The addition of the black sub-class adds further complexity

when compared to the QHD counterparts. In addition, plants

in the BUP dataset grow significantly taller with much sparser

foliage due to the glass house setting.

The glass house for sweet pepper cultivation was arranged

into six rows of approximately 40m in length each. Data

was recorded into bagfiles using an Intel RealSense D435i

camera at 30fps. For recording each row was separated into

four equally spaced sections. Post processing was completed

to align the depth and RGB images using the pyrealsense23

libraries (see Figure 4-(a) and -(g) for examples). The stored

depth image is a uint16 TIFF format file where 1mm is

represented by each change in value.

For annotation, the glasshouse data was separated into three

distinct sections: 1/3 training, 1/3 validation, and 1/3 evalua-

tion. The separation of sections during recordings allowed for

the data to be evenly split between each sub-set. Extending

beyond bounding box regression, instance based masks are

annotated. Annotation was completed by three individuals

who annotated different images. A separate mask is included

for each sub-class where zero denotes “background”, and a

numbered response indicates the presence of a sweet pepper,

with examples outlined in Figure 4.

3https://github.com/IntelRealSense/librealsense

The introduced dataset contains the four sub-classes of

sweet pepper with distributions shown in Table III. Illumina-

tion variations between rows create natural fluctuation in the

data, creating a complicated and challenging dataset.

IV. IMPLEMENTATION AND EVALUATION PROTOCOLS

Following [5], we implement Faster-RCNN for fruit and

sub-class detection and classification. Faster-RCNN was se-

lected due to the ease in which multi-task learning can

be explored by exploiting the Mask-RCNN framework. To

evaluate the generality of these models we perform same and

cross domain (“sweet pepper in the wild”) analysis. Different

experimental set ups, with and without the sub-class node,

are evaluated. To show the versatility of the new BUP dataset

we implement instance based segmentation of sweet pepper

and evaluate it’s performance across domains. Our results are

presented using the standard F1-Score metric, for further detail

refer to [5].

A. Hyperparameters

Faster-RCNN and Mask-RCNN models are based on the

PyTorch implementations in TorchVision4. Training uses SGD

as the optimizer, with a uniform learning rate of 0.001,

momentum of 0.9, and weight decay of 0.0005. A batch size

of four is used with mean normalisation. We train for 250
epochs and the results displayed here use the validation set

for parameter selection. For evaluations with Mask-RCNN, we

empirically found that a hidden layer of 256 neurons achieved

optimal results. We do not employ data augmentation in our

experiments as [10] outlined that high performance can be

achieved with as few as 100 samples when fine tuning.

B. Super-Class

The following evaluations concentrate on super-class (sweet

pepper) detection only. We evaluate the performance of both

detection (Faster-RCNN) and segmentation (Mask-RCNN) for

both intra- and inter-environment accuracy.

1) Detection: Super-class classification is considered by

implementing the standard Faster-RCNN classification tech-

nique. In the “classification” only component of Figure 5,

super-class classification only uses the unchecked classifica-

tion and regression boxes.

In the two class problem we simplify the classification

into “background” and “sweet pepper”. With this protocol,

all datasets can be directly compared.

2) Segmentation: In a harvesting situation, pixel wise

segmentation has considerable benefits over bounding boxes

alone. Segmentation allows for more accurate object localisa-

tion and picking [4]. The new BUP dataset contains instance

based segmentation of the sub-classes in the dataset. We

perform instance based segmentation using the two class

problem setting (standard Faster-RCNN) from Section IV-B1

and the Mask-RCNN framework (see Figure 5, Segmentation

and Classification).

4https://pytorch.org/tutorials/intermediate/torchvision tutorial.html



(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Example images from the BUP dataset: (a) is the raw image, (b) is a colourised version of the instance masks, (c)-(f) are representations of the
instance masks for black, green, mixed, and red, and (g) is a quantized version of the depth image for visualisation.

Fig. 5. Faster-RCNN and Mask-RCNN frameworks. In standard Faster-
RCNN networks only the classification step is included, while Mask-RCNN
incorporates both paths. The standard Faster-RCNN framework is extended to
include sub class classification using a parallel layer directly classifying data
off the final embedding.

Calculation of the F1-Score requires intersection over union

(IoU) based precision recall scores. The BUP scores can

be calculated directly from the segmentation ground truth

contained in the dataset. However, for cross dataset analysis we

leverage the bounding box ground truth contained in the QHD

datasets and compare them to the masks estimated at inference.

While bounding box comparisons may not accurately reflect

system performance for segmentation (e.g. for Mask-RCNN) it

does give a strong indication of the cross dataset generalisation

using the BUP dataset for training.

C. Sub-Class

Sub-class evaluation is performed using two networks based

on the Faster-RCNN framework. In each technique the primary

goal is to detect not only the location of the sweet pepper but

also to accurately detect the underlying sub-class.

1) N Super-Classes: Initially we implement the same net-

work as that in Section IV-B1. However, instead of there being

two classes (background and sweet pepper) we extend the

sub-classes as super-classes. For this evaluation, for BUP we

combine black and green into a single class (due to their visual

similarity) and evaluate for: “background”, “green”, “mixed”,

and “red”. For this problem we report the average F1-Score

of the individual sub-classes.

2) Parallel Sub-Class: Sub-class classification evaluation

follows [5] which introduced the parallel classification layer

shown in Figure 5 (perforated lines representing sub-class

classification). The technique allows the model to learn super-

and sub-class classification layers. In this manner we are able

to leverage all sweet pepper data to create a strong super-class

model, while also classifying the sub-classes.

Two metrics are considered, the super-class F1-Score and

the average of the confusion matrix (sub-classes), such that,

CAve =
1

Nr

×

Nr∑

i

conf(i, i)
∑Nc

j conf(i, j)
, (1)

where Nr and Nc are the number of rows and columns

respectively (Nr = Nc as this is a confusion matrix), and

the confusion matrix is represented by conf(·).

V. EVALUATION

The experiments contained in this section follow those

outlined in Section IV. Datasets are made up of the three

primary sets and four combined sets (seven in total), listed

in Table IV. Two BUP datasets are used, one which combines

black and green (BUP3), and one that contains all four sub-

classes (BUP4). In all experiments the BUP dataset images

are downsized to the height of the QHD sets, with a final

resolution of 640 × 360. For evaluations relating to BUP4,

any dataset or combination thereof that does not include the

‘black’ sub-class is not included.

When referring to different combinations that use the BUP

dataset, if the four is not designated then we are using

the BUP3 version. For example QFBUP refers to using the

three class version of the BUP dataset combined with QHDF,

whereas, QFBUP4 refers to using the four class version of the

BUP dataset with QHDF.



TABLE IV
THE COMBINED DATASETS AND THEIR ACRONYMS. THE FOUR IN

BRACKETS INDICATES WHETHER THE BUP USES ALL THE SUB-CLASSES

(BUP4), IF THE FOUR IS NOT DESIGNATED THEN WE USE BUP3.

Acronym Combinations

QHDC QHDF + QHDP

QFBUP(4) QHDF + BUP(4)

QPBUP(4) QHDP + BUP(4)

All(4) QHDF + QHDP + BUP(4)

TABLE V
F1-SCORES OF THE TWO CLASS PROBLEM. TRAINING DATA IS IN THE

ROWS AND EVALUATION DATA USED IN IN THE COLUMNS.

Train
Evaluation

QHDF QHDP BUP QHDC QFBUP QPBUP All

QHDF 0.783 0.755 0.465 0.773 0.665 0.649 0.702

QHDP 0.696 0.877 0.508 0.783 0.629 0.747 0.725

BUP 0.323 0.647 0.775 0.463 0.456 0.691 0.523

QHDC 0.792 0.879 0.524 0.836 0.696 0.749 0.765

QFBUP 0.763 0.763 0.780 0.763 0.763 0.763 0.763

QPBUP 0.681 0.873 0.773 0.775 0.708 0.828 0.770

All 0.795 0.866 0.755 0.830 0.777 0.820 0.810

All evaluations consider two factors: how well a model

targets the source dataset, and how well it generalises to

unseen data. Tables display the detection F1-Scores where

data used to train the models are presented in the rows, and

the evaluation datasets are displayed in the columns. In each

table we highlight the best performing model for each of the

datasets.

A. Two Class Detection

The two class evaluation reports the performance on detec-

tion of sweet pepper only, i.e. there are no sub-classes.

For the uncombined datasets, we see from Table V that the

target and source sets perform best, and domain shift between

datasets is clearly visible. This is particularly evident when

comparing the BUP and QHDF sets, where BUP to QHDF

scores only 0.323. Sensor, illumination and cultivar variation

are factors in this reduced performance.

The addition of data when combining datasets generally

has a positive impact on performance. In the case of QHDC,

we see an increase in performance on the BUP datset when

compared to the score when QHDF is used to train the model.

Overall, while these datasets are dissimilar in nature, their

combination typically improves (or maintains) performance

across all evaluations. A primary factor in the combined

performance is the nature of the two class problem, which

only detects based on the appearance of a sweet pepper and

adding more samples diversifies the training set and improves

performance.

B. Instance Segmentation Evaluation

As a further study into the two class problem we evaluate

instance based segmentation using the BUP dataset which is

trained using the Mask-RCNN model. This evaluation will

ascertain whether multi-task learning impacts cross-domain

inference.

This evaluation yields detection F1-Scores of 0.700, 0.837,

and 0.789 on the QHDF, QHDP, and BUP datasets respec-

tively. Interestingly the QHDP dataset obtains a higher F1-

Score than the source dataset. The BUP score, of 0.789, refers

to the instance-based segmentation (per-pixel) performance,

whereas, the QHDF and QHDP scores refer to bounding box

detection as discussed in Section IV-B2.

Fig. 6. Example images using the BUP data for training and evaluated on the
QHDF dataset. The left column represents the 2 class Faster-RCNN where the
green bounding boxes represent the ground truth and the red the detections.
On the right we show the same image using Mask-RCNN, where the green
bounding boxes are once again the ground truth and the magenta segmented
regions are the output from the framework.

Of particular interest here is the severe reduction in domain

shift experienced between the BUP and QHDF datasets. In

Table V, the two class detection task, the achieved F1-Score

was 0.323, considerably lower than the 0.700 achieved here.

We attribute the considerable improvement to the influence of

multi-task learning of both the segmentation and classification.

The dual losses used during training are able to improve

generalisability of the cross-domain models.

Based on these results it is evident that multi-task learning

can play a significant role in cross domain localisation. Fig-

ure 6 clearly outlines one of the primary benefits witnessed,

a reduction in false detections (when compared to two class

detection).

As a qualitative analysis, we present a positive and negative

example from the QHDF and QHDP datasets in Figure 7.

A common issue in both datasets is the detection of foreign

objects, like pots in the negative example. Objects such as

these are not included in the BUP dataset and as such appear

similar in shape and colour to the black sweet pepper found

in the BUP dataset. In the difficult, heavily occluded QHDF

dataset the BUP segmentation model is still able to perform

reliably for sweet pepper segmentation.



Fig. 7. Visualisation of a positive example from QHDF (left two images)
and a negative example from QHDP (right two images). In each case the left
image is the original, and the right image is the segmentation result.

TABLE VI
N -CLASS EVALUATION, REPORTED SCORES ARE BASED ON THE AVERAGE

F1-SCORE OF THE THREE LABELS (GREEN, MIXED, AND RED).

Train
Evaluation

QHDF QHDP BUP3 QHDC QFBUP QPBUP All

QHDF 0.599 0.535 0.369 0.564 0.550 0.496 0.536

QHDP 0.565 0.723 0.535 0.649 0.559 0.658 0.625

BUP3 0.225 0.581 0.592 0.411 0.344 0.608 0.455

QHDC 0.678 0.761 0.500 0.728 0.636 0.689 0.690

QFBUP 0.619 0.614 0.562 0.621 0.663 0.638 0.641

QPBUP 0.539 0.735 0.617 0.645 0.598 0.718 0.655

All 0.665 0.747 0.610 0.717 0.686 0.726 0.712

C. N Super-Class Evaluation

The N super-class evaluation treats the sub-classes as super-

classes. The average F1-Score for the N -classes is displayed

in Table VI.

Comparing the two class and N -class models we see a

considerable drop in performance. In the two class problem

the QHDP best F1-Score was 0.877 compared to 0.723 in

Table VI. This performance decrease can be attributed to

the dilution of what constitutes a sweet pepper. It could be

considered that as the number of sweet pepper in each class

is increased the performance of the N -class problem also

increases. Similar to the two class problem, it appears that

the combination of data creates more general models. This is

most evident when comparing QFBUP to the QHDP dataset.

In the single dataset evaluations the BUP trained model is able

to achieve the highest score of 0.581, where the combined set

produces 0.614. This is an increase in performance and shows

that generalised models are able to detect and classify sweet

peppers from unseen domains.

D. Sub Class Evaluation

Based on the results in Sections V-A and V-C and the work

in [5], we train models based on the super- and sub-class

network. This approach uses a parallel node to train super-

and sub-class classifiers, ensuring the maximum possible data

available for each task.

The use of a parallel node for sub-class classification is

vindicated by the results in Table VII. We see a marked

improvement in F1-Score over the N -class results, and achieve

results commensurate with the two class evaluation. Interest-

ingly, a high F1-Score does not necessarily indicate the highest

sub-class classification (CAve) performance and vice versa.

Overall the sub-class layer is able to accurately detect the

colour in sweet pepper to a high degree of accuracy. This

accuracy is generally higher when we train models based on

all the data. In these evaluations we are consistently able to

produce high F1-Scores and CAve scores. This is highlighted

by a CAve score of 0.900 on the QFBUP variant.

Once again we see the benefit of combining the data where

the All model is consistently able achieve the best CAve

scores. It should be noted that in the QHD datasets the green

colour dominates, and including this in the combined sets acts

to increase the CAve score. This is evident when comparing

to datasets that include the BUP dataset, particularly the single

BUP model. However, overall we again see the value in

combining datasets to create a more generic model, as this

acts to increase not only the F1-Score but the CAve.

We also investigate the results of the four sub-class (BUP4)

problem using the parallel layer. Table VIII indicates that the

inclusion of the fourth class decreases sub-class detection,

while the super-class performance remains similar. The addi-

tion of this extra sub-class adds complexity to the classification

problem. Similar to the N -class problem in Section V-C

where the sweet pepper was diluted through multiple super-

classes, here we are diluting the sub-classes by splitting ‘black’

and ‘green’ back into their original labels. Another possible

reason for this is noise in the annotations. Through thorough

investigation during these evaluations it was noted that sweet

pepper were both missed on occasion, and in some cases

subjectively annotated. As the training, validation, and testing

sets are were annotated by different individuals, subjectivity

may be impacting results.

Once the combined datasets are used we see a marked

increase in accuracy when compared to the BUP4 model

alone. This is partly due to the increased availability of

sweet peppers, and the significant increase in the green sub-

class performance. Dataset combination positively impacts the

generalisation of models, with significant improvements in

both the sub- and super-class scores.

VI. CONCLUSION

In this paper we have explored cross-domain performance

of state-of-the-art detection systems, applied to an agricultural

setting (sweet pepper). Consistent with other research we

show that exploring multiple domains during training improves

overall performance. However, we found that the incorporation



TABLE VII
PARALLEL NODE EVALUATION BASED ON THREE SUB-CLASSES, THE F1-SCORE OF THE SUPER CLASS AND THE AVERAGE OF THE SUB-CLASS

CONFUSION MATRIX ARE DISPLAYED.

Train
Evaluation QHDF QHDP BUP3 QHDC QFBUP QPBUP All

F1 CAve F1 CAve F1 CAve F1 CAve F1 CAve F1 CAve F1 CAve

QHDF 0.778 0.721 0.725 0.694 0.442 0.701 0.751 0.706 0.654 0.757 0.620 0.709 0.682 0.720

QHDP 0.672 0.806 0.874 0.858 0.503 0.773 0.770 0.842 0.611 0.807 0.745 0.848 0.714 0.837

BUP3 0.314 0.777 0.645 0.758 0.762 0.715 0.452 0.825 0.441 0.652 0.686 0.767 0.510 0.701

QHDC 0.785 0.801 0.873 0.834 0.511 0.722 0.829 0.830 0.690 0.808 0.748 0.827 0.762 0.827

QFBUP 0.767 0.797 0.791 0.758 0.769 0.678 0.779 0.765 0.767 0.832 0.780 0.776 0.775 0.784

QPBUP 0.694 0.796 0.874 0.841 0.752 0.711 0.784 0.824 0.714 0.812 0.825 0.835 0.775 0.826

All 0.787 0.813 0.872 0.873 0.756 0.743 0.830 0.858 0.774 0.900 0.826 0.872 0.811 0.865

TABLE VIII
SUB CLASS EVALUATION, RESULTS ARE DISPLAYED AS A CONFUSION

MATRIX WITH THE SUPER CLASS (BACKGROUND, SWEET PEPPER)
F1-SCORE THEN THE AVERAGE SUB CLASS CONFUSION MATRIX RESULT.

Train
Evaluation BUP4 QFBUP4 QPBUP4 All4

F1 CAve F1 CAve F1 CAve F1 CAve

BUP4 0.756 0.640 0.427 0.629 0.658 0.718 0.489 0.676

QFBUP4 0.760 0.617 0.771 0.825 0.769 0.775 0.772 0.804

QPBUP4 0.761 0.621 0.722 0.805 0.831 0.840 0.779 0.841

All4 0.752 0.636 0.772 0.859 0.825 0.837 0.811 0.848

of multi-task learning, extending the Faster-RCNN framework

to the Mask-RCNN framework, greatly increases cross-domain

performance from 0.323 to 0.700. Furthermore, qualitative

research outlines the benefits of instance-based segmentation

in a cross domain setting, particularly relating to a reduction

in false detections. These evaluations outline the potential for

models to generalise well across domains, effectively decreas-

ing farming costs through increased workforce efficiency.

To enable this work, we have made use of three novel

datasets which we publicly release. These datasets reflect

challenging real-world agricultural conditions. Variations in

domain are captured by each dataset with different colouration

due to cultivar (sub-species), changes in environment (field,

polytunnel, and glass house), location (northern and southern

hemisphere), and cameras.

Future work should explore ways in which the extra

depth modality captured in the dataset can further enhance

performance. Similarly, the potential for domain adaptation

techniques, in conjunction with mutli-task learning should also

be explored.
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